Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(15): 156701, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682975

RESUMO

A new perovskite KOsO_{3} has been stabilized under high-pressure and high-temperature conditions. It is cubic at 500 K (Pm-3m) and undergoes subsequent phase transitions to tetragonal at 320 K (P4/mmm) and rhombohedral (R-3m) at 230 K as shown from refining synchrotron x-ray powder diffraction (SXRD) data. The larger orbital overlap integral and the extended wave function of 5d electrons in the perovskite KOsO_{3} allow to explore physics from the regime where Mott and Hund's rule couplings dominate to the state where the multiple interactions are on equal footing. We demonstrate an exotic magnetic ordering phase found by neutron powder diffraction along with physical properties via a suite of measurements including magnetic and transport properties, differential scanning calorimetry, and specific heat, which provide comprehensive information for a system at the crossover from localized to itinerant electronic behavior.

2.
Small ; 20(2): e2306053, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658500

RESUMO

Employing high voltage cobalt-free spinel LiNi0.5 Mn1.5 O4 (LNMO) as a cathode is promising for high energy density and cost-effectiveness, but it has challenges in all-solid-state batteries (ASSBs). Here, it is revealed that the limitation of lithium argyrodite sulfide solid electrolyte (Li6 PS5 Cl) with the LNMO cathode is due to the intrinsic chemical incompatibility and poor oxidative stability. Through a careful analysis of the interphase of LNMO, it is elucidated that even the halide solid electrolyte (Li3 InCl6 ) with high oxidative stability can be decomposed to form resistive interphase layers with LNMO in ASSBs. Interestingly, with Fe-doping and a Li3 PO4 protective layer coating, LNMO with Li3 InCl6 displays stable cycle performance with a stabilized interphase at a high voltage (≈4.7 V) in ASSBs. The enhanced interfacial stability with the extended electrochemical stability window through doping and coating enables high electrochemical stability with LNMO in ASSBs. This work provides guidance for employing high-voltage cathodes in ASSBs and highlights the importance of stable interphases to enable stable cycling in ASSBs.

3.
Small ; 19(36): e2208252, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37162462

RESUMO

All-solid-state lithium-metal batteries offer higher energy density and safety than lithium-ion batteries, but their practical applications have been pushed back by the sluggish Li+ transport, unstable electrolyte/electrode interface, and/or difficult processing of their solid-state electrolytes. Li+ -conducting composite polymer electrolytes (CPEs) consisting of sub-micron particles of an oxide solid-state electrolyte (OSSE) dispersed in a solid, flexible polymer electrolyte (SPE) have shown promises to alleviate the low Li+ conductivity of SPE, and the high rigidity and large interfacial impedance of OSSEs. Solution casting has been by far the most widely used procedure for the preparation of CPEs in research laboratories; however, this method imposes several drawbacks including particle aggregation and settlement during a long-term solvent evaporation step, excessive use of organic solvents, slow production time, and mechanical issues associated with handling of ultra-thin films of CPEs (<50 µm). To address these challenges, an electrophoretic deposition (EPD) method is developed to in situ deposit ultra-thin CPEs on lithium-iron-phosphate (LFP) cathodes within just a few minutes. EPD-prepared CPEs have shown better electrochemical performance in the lithium-metal battery than those CPEs prepared by solution casting due to a better dispersion of OSSE within the SPE matrix and improved CPE contact with LFP cathodes.

4.
Angew Chem Int Ed Engl ; 60(32): 17701-17706, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34192402

RESUMO

The integration of Li2 S6 within a poly(ethylene oxide) (PEO)-based polymer electrolyte is demonstrated to improve the polymer electrolyte's ionic conductivity because the strong interplay between O2- (PEO) and Li+ from Li2 S6 reduces the crystalline volume within the PEO. The Li/electrolyte interface is stabilized by the in situ formation of an ultra-thin Li2 S/Li2 S2 layer via the reaction between Li2 S6 and lithium metal, which increases the ionic transport at the interface and suppresses lithium dendrite growth. A symmetric Li/Li cell with the Li2 S6 -integrated composite electrolyte has excellent cyclability and a high critical current density of 0.9 mA cm-2 at 40 °C. Impressive electrochemical performance is demonstrated with all-solid-state Li/LiFePO4 and high-voltage Li/LiNi0.8 Mn0.1 Co0.1 O2 cells at 40 °C.

5.
ACS Appl Mater Interfaces ; 13(26): 30703-30711, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34180236

RESUMO

A novel composite electrolyte is rationally designed with a polyethylene glycol diacrylate (PEGDA) polymer and a garnet-type fast lithium-ion conductor (Li6.4La3Zr1.4Ta0.6O12, LLZTO) for solid-state lithium batteries. The LLZTO ceramic phase is incorporated into the PEGDA polymeric matrix as nanoparticles. The ionic conductivity of the composite is further optimized with a succinonitrile plasticizer. The solid composite membranes are synthesized via a tape casting process followed by a UV curing procedure. The resulting solid-state composite electrolyte delivers a room-temperature Li+-ion conductivity of 3.1 × 10-4 S cm-1 and can sustain an electrochemical polarization potential up to 4.6-4.7 V (vs Li+/Li). The compositing approach harnesses the advantages of both polymeric PEGDA and ceramic LLZTO. In addition to enhancing the ionic conductivity, the LLZTO ceramic filler can suppress Li dendrites. The polymeric phase of PEGDA facilitates good interfacial contact between the solid electrolyte and the electrodes. The solid-state cells fabricated with the composite solid electrolyte, lithium-metal anode, and LiNi0.8Mn0.1Co0.1O2 (NMC 811) cathode show long cyclability.

6.
ACS Appl Mater Interfaces ; 13(21): 24662-24669, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34008941

RESUMO

An ionic liquid (IL) laden metal-organic framework (MOF) sodium-ion electrolyte has been developed for ambient-temperature quasi-solid-state sodium batteries. The MOF skeleton is designed according to a UIO-66 (Universitetet i Oslo) structure. A sodium sulfonic (-SO3Na) group grafted to the UIO-based MOF ligand improves the Na+-ion conductivity. Upon lading with a sodium-based ionic liquid (Na-IL), sodium bis(trifluoromethylsulfonyl)imide (NaTFSI) in 1-n-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Bmpyr-TFSI), the Na-IL laden sulfonated UIO-66 (UIOSNa) quasi-solid electrolyte exhibits a Na+-ion conductivity of 3.6 × 10-4 S cm-1 at ambient temperature. Quasi-solid-state sodium batteries with the Na-IL/UIOSNa electrolyte are demonstrated with a layered Na3Ni1.5TeO6 cathode and sodium-metal anode. The quasi-solid-state Na∥Na-IL/UIOSNa∥Na3Ni1.5TeO6 cells show remarkable cycling performance.

7.
J Am Chem Soc ; 143(17): 6542-6550, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33904722

RESUMO

The application of flexible, robust, and low-cost solid polymer electrolytes in next-generation all-solid-state lithium metal batteries has been hindered by the low room-temperature ionic conductivity of these electrolytes and the small critical current density of the batteries. Both issues stem from the low mobility of Li+ ions in the polymer and the fast lithium dendrite growth at the Li metal/electrolyte interface. Herein, Mg(ClO4)2 is demonstrated to be an effective additive in the poly(ethylene oxide) (PEO)-based composite electrolyte to regulate Li+ ion transport and manipulate the Li metal/electrolyte interfacial performance. By combining experimental and computational studies, we show that Mg2+ ions are immobile in a PEO host due to coordination with ether oxygen and anions of lithium salts, which enhances the mobility of Li+ ions; more importantly, an in-situ formed Li+-conducting Li2MgCl4/LiF interfacial layer homogenizes the Li+ flux during plating and increases the critical current density up to a record 2 mA cm-2. Each of these factors contributes to the assembly of competitive all-solid-state Li/Li, LiFePO4/Li, and LiNi0.8Mn0.1Co0.1O2/Li cells, demonstrating the importance of surface chemistry and interfacial engineering in the design of all-solid-state Li metal batteries for high-current-density applications.

8.
Nano Lett ; 21(5): 2281-2287, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33621101

RESUMO

It remains a great challenge to explore desirable cathodes for sodium-ion batteries to satisfy the ever-increasing demand for large-scale energy storage systems. In this Letter, we report a NASICON-structured Na4MnCr(PO4)3 cathode with high specific capacity and operation potential. The reversible access of the Mn2+/Mn3+ (3.75/3.4 V), Mn3+/Mn4+ (4.25/4.1 V), and Cr3+/Cr4+ (4.4/4.3 V vs Na/Na+) redox couples in a Na4MnCr(PO4)3 cathode endows a distinct three-electron redox reaction during the insertion/extraction process. The highly stable NASICON structure with a small volume variation upon cycling ensures long-time cycling stability (73.3% capacity retention after 500 cycles within the potential region of 2.5-4.6 V). The impedance analysis and interface characterization indicate that the evolution of a cathode electrolyte interphase at high potential is correlated with the capacity fading, while the robustness of the NASICON framework is redemonstrated.

9.
Nat Commun ; 12(1): 13, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397895

RESUMO

Energy storage with high energy density and low cost has been the subject of a decades-long pursuit. Sodium-ion batteries are well expected because they utilize abundant resources. However, the lack of competent cathodes with both large capacities and long cycle lives prevents the commercialization of sodium-ion batteries. Conventional cathodes with hexagonal-P2-type structures suffer from structural degradations when the sodium content falls below 33%, or when the integral anions participate in gas evolution reactions. Here, we show a "pillar-beam" structure for sodium-ion battery cathodes where a few inert potassium ions uphold the layer-structured framework, while the working sodium ions could diffuse freely. The thus-created unorthodox orthogonal-P2 K0.4[Ni0.2Mn0.8]O2 cathode delivers a capacity of 194 mAh/g at 0.1 C, a rate capacity of 84% at 1 C, and an 86% capacity retention after 500 cycles at 1 C. The addition of the potassium ions boosts simultaneously the energy density and the cycle life.

10.
Sci Adv ; 6(50)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33298450

RESUMO

Li-10 wt % Mg alloy (Li-10 Mg) is used as an anode material for a solid-state battery with excellent electrochemical performance and no evidence of dendrite formation during cycling. Thermal treatment of Li metal during manufacturing improves the interfacial contact between a Li metal electrode and solid electrolyte to achieve an all solid-state battery with increased performance. To understand the properties of the alloy passivation layer, this paper presents the first direct observation of its evolution at elevated temperatures (up to 325°C) by in situ scanning electron microscopy. We found that the morphology of the surface passivation layer was unchanged above the alloy melting point, while the bulk of the material below the surface was melted at the expected melting point, as confirmed by in situ electron backscatter diffraction. In situ heat treatment of Li-based materials could be a key method to improve battery performance.

11.
Science ; 370(6513): 192-197, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33033214

RESUMO

High-rate lithium (Li) ion batteries that can be charged in minutes and store enough energy for a 350-mile driving range are highly desired for all-electric vehicles. A high charging rate usually leads to sacrifices in capacity and cycling stability. We report use of black phosphorus (BP) as the active anode for high-rate, high-capacity Li storage. The formation of covalent bonds with graphitic carbon restrains edge reconstruction in layered BP particles to ensure open edges for fast Li+ entry; the coating of the covalently bonded BP-graphite particles with electrolyte-swollen polyaniline yields a stable solid-electrolyte interphase and inhibits the continuous growth of poorly conducting Li fluorides and carbonates to ensure efficient Li+ transport. The resultant composite anode demonstrates an excellent combination of capacity, rate, and cycling endurance.

12.
Angew Chem Int Ed Engl ; 59(40): 17488-17493, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32578368

RESUMO

A group of newly reported antiperovskite nitrides Cux In1-x NNi3 (0≤x≤1) with tunable composition are employed as electrocatalysts for the hydrogen evolution reaction (HER). Cu0.4 In0.6 NNi3 shows the highest intrinsic performance among all developed catalysts with an overpotential of merely 42 mV at 10 mA cmgeo -2 . Stability tests at a high current density of 100 mA cmgeo -2 show its super-stable performance with only 7 mV increase in overpotential after more than 60 hours of measurement, surpassing commercial Pt/C (increase of 170 mV). By partial substitution, the derived antiperovskite nitride achieves a smaller kinetic barrier of water dissociation compared to the unsubstituted InNNi3 and CuNNi3 , revealed by first-principle calculations. It is found that the partially substituted Cux In1-x NNi3 possesses a thermal neutral and desirable Gibbs free energy of hydrogen for HER, ascribed to the tailoring of the energy of d-band center arose by the A-site (A=Cu or In) substitution and a resulting optimization of adsorbate interactions.

13.
Angew Chem Int Ed Engl ; 59(29): 12170-12177, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32315509

RESUMO

Galvanic replacement reactions have been studied as a versatile route to synthesize nanostructured alloys. However, the galvanic replacement chemistry of alkali metals has rarely been explored. A protective interphase layer will be formed outside templates when the redox potential exceeds the potential windows of nonaqueous solutions, and the complex interfacial chemistry remains elusive. Here, we demonstrate the formation of room-temperature liquid metal alloys of Na and K via galvanic replacement reaction. The fundamentals of the reaction at such low potentials are investigated via a combined experimental and computational method, which uncovers the critical role of solid-electrolyte interphase in regulating the migration of Na ions and thus the alloying reaction kinetics. With in situ formed NaK liquid alloys as an anode, the dendritic growth of alkali metals can be eliminated thanks to the deformable and self-healing features of liquid metals. The proof-of-concept battery delivers reasonable electrochemical performance, confirming the generality of this in situ approach and design principle for next-generation dendrite-free batteries.

14.
Adv Mater ; 32(22): e2000316, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32311170

RESUMO

The dendrite-free sodium-potassium (Na-K) liquid alloy composed of two alkali metals is one of the ideal alternatives for Li metal as an anode material while maintaining large capacity, low potential, and high abundance. However, Na- or K-ion batteries have limited cathode materials that can deliver stably large capacity. Combining advantages of both, a hybrid-cation liquid metal battery is designed for a Li-ion-insertion-based cathode to deliver stable high capacity using a Na-K liquid anode to avoid dendrites. The mechanical property of the Na-K alloy is confirmed by simulation and experimental characterization, which leads to stable cycling performance. The charge carrier selection principle in this ternary hybrid-cation system is investigated, showing consistency with the proposed interfacial layer formation and ion distribution mechanism for the electrochemical process as well as the good stability. With Li ions contributing stable cycling as the cathode charge carrier, the K ion working as charge carrier on the anode, and Na as the medium to liquefy K metal, such a ternary hybrid battery system not only inherits the rich battery chemistry of Li-insertion cathodes but also broadens the understanding of alkali metal alloys and hybrid-ion battery chemistry.

15.
Data Brief ; 29: 105339, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32181301

RESUMO

Here we show the electrochemical data for a Ferroelectric Electrolyte Battery (FEB) Li/ferroelectric Li-glass electrolyte (Li2·99Ba0·005ClO) in cellulose/γ-MnO2 pouch-cell with (2.5 × 2.5 cm2) discharged with a green LED load. The Li2·99Ba0·005ClO electrolyte was synthesized and ground in ethanol. A cellulose matrix was dipped into the Li-glass/ethanol slurry. The γ-MnO2 based cathode was doctor bladed onto a carbon-coated aluminum foil current collector. The cell was assembled in an Ar-filled glove-box and it was not sealed and, therefore, it remained inside the glove-box while discharging with a green LED at approximately 24 °C for 334 days (>11 months) corresponding to 764 mAhg-1 of the active cathode and to 224 mAhg-1 of the electrolyte. The maximum capacity of γ-MnO2 is 209 mAhg-1 and of the MnO2 in the commercial cell is 308 mAhg-1, corresponding to LiMnO2; therefore, the capacity of the FEB is 370% the capacity of the γ-MnO2 and 250% the capacity of the MnO2 in the commercial cell. Moreover, the experimental capacity of the electrolyte minus the maximum capacity of the γ-MnO2 is 163 mAhg-1 of the electrolyte. The potential difference between anode and cathode in a diode is non-linear and dependent on the input current and, therefore, the plateaus in the potential vs time curves do not correspond to thermodynamic equilibria of the electrochemical cell energy source. Nevertheless, the maximum output current as well as the FEB cell's discharge profile may be determined with an LED and compared with traditional battery cells' profiles. The present data might be used by the electrochemical (in particular, battery), electrostatic and ferroelectric materials researchers and industrials for comparative analysis. Furthermore, it can be reused to calculate the maximum energy stored electrostatically in these devices.

16.
Angew Chem Int Ed Engl ; 59(20): 7857-7863, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32022378

RESUMO

Controllable synthesis of atomically ordered intermetallic nanoparticles (NPs) is crucial to obtain superior electrocatalytic performance for fuel cell reactions, but still remains arduous. Herein, we demonstrate a novel and general hydrogel-freeze drying strategy for the synthesis of reduced graphene oxide (rGO) supported Pt3 M (M=Mn, Cr, Fe, Co, etc.) intermetallic NPs (Pt3 M/rGO-HF) with ultrasmall particle size (about 3 nm) and dramatic monodispersity. The formation of hydrogel prevents the aggregation of graphene oxide and significantly promotes their excellent dispersion, while a freeze-drying can retain the hydrogel derived three-dimensionally (3D) porous structure and immobilize the metal precursors with defined atomic ratio on GO support during solvent sublimation, which is not afforded by traditional oven drying. The subsequent annealing process produces rGO supported ultrasmall ordered Pt3 M intermetallic NPs (≈3 nm) due to confinement effect of 3D porous structure. Such Pt3 M intermetallic NPs exhibit the smallest particle size among the reported ordered Pt-based intermetallic catalysts. A detailed study of the synthesis of ordered intermetallic Pt3 Mn/rGO catalyst is provided as an example of a generally applicable method. This study provides an economical and scalable route for the controlled synthesis of Pt-based intermetallic catalysts, which can pave a way for the commercialization of fuel cell technologies.

17.
Nano Lett ; 20(3): 1607-1613, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32017575

RESUMO

We present the first results of in situ scanning electron microscopy (SEM) of an all-solid Li battery with a nickel-manganese-cobalt-oxide (NMC-622) cathode at 50 °C and an operating voltage of 2.7-4.3 V. Experiments were conducted under a constant current at several C rates (nC rate: cycling in 1/n h): C/12, C/6, and C/3. The microstructure evolution during cycling was monitored by continuous secondary electron imaging. We found that the chemical degradation of the solid polymer electrolyte (SPE) was the main mechanism for battery failure. This degradation was observed in the form of a gradual thinning of the SPE as a function of cycling time, resulting in gas generation from the cell. We also present various dynamic electrochemical and mechanical phenomena, as observed by SEM images, and compare the performance of this battery with that of an all-solid Li battery with a LiFePO4 cathode.

18.
Nature ; 578(7794): 251-255, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32015545

RESUMO

Solid-state lithium metal batteries require accommodation of electrochemically generated mechanical stress inside the lithium: this stress can be1,2 up to 1 gigapascal for an overpotential of 135 millivolts. Maintaining the mechanical and electrochemical stability of the solid structure despite physical contact with moving corrosive lithium metal is a demanding requirement. Using in situ transmission electron microscopy, we investigated the deposition and stripping of metallic lithium or sodium held within a large number of parallel hollow tubules made of a mixed ionic-electronic conductor (MIEC). Here we show that these alkali metals-as single crystals-can grow out of and retract inside the tubules via mainly diffusional Coble creep along the MIEC/metal phase boundary. Unlike solid electrolytes, many MIECs are electrochemically stable in contact with lithium (that is, there is a direct tie-line to metallic lithium on the equilibrium phase diagram), so this Coble creep mechanism can effectively relieve stress, maintain electronic and ionic contacts, eliminate solid-electrolyte interphase debris, and allow the reversible deposition/stripping of lithium across a distance of 10 micrometres for 100 cycles. A centimetre-wide full cell-consisting of approximately 1010 MIEC cylinders/solid electrolyte/LiFePO4-shows a high capacity of about 164 milliampere hours per gram of LiFePO4, and almost no degradation for over 50 cycles, starting with a 1× excess of Li. Modelling shows that the design is insensitive to MIEC material choice with channels about 100 nanometres wide and 10-100 micrometres deep. The behaviour of lithium metal within the MIEC channels suggests that the chemical and mechanical stability issues with the metal-electrolyte interface in solid-state lithium metal batteries can be overcome using this architecture.

19.
Data Brief ; 29: 105087, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31970278

RESUMO

Here we show the electrochemical raw data for a Li/ferroelectric Li-glass electrolyte/plasticizer/Li-rich, F doped LNMO coin cell where the plasticizer is succinonitrile-SN. The nominal composition of the active oxide-host cathode particles is Li1.36Ni0.49Mn1.15O3.28F0.36 (LNMO) that disproportionated into 78 wt% spinel phase LiNi1/2Mn3/2O3.8F0.2 and 22 wt% Li-rich, F-doped layered phase containing Li2MnO3 planes separated by Li+ and Ni2+ ions. The Li2.99Ba0.005OCl electrolyte was synthesized and ground in ethanol. A cellulose matrix was dipped into the glass/ethanol slurry. This cell has been cycling for two years and six months. The electrochemical performance was firstly published in graphs after cycling the cell for about one year and three months [1]. The Li//LNMO CR2032 coin cell was assembled in an argon-filled glove box and electrochemically tested in a battery testing analyzer (LAND) at room temperature and at constant specific current densities and potentials between 2.5 and 4.8 V. Moreover, the cell's cycling current is 23 mA g-1 (active cathode). The data might be used by the electrochemical (in particular, battery), electrostatic and ferroelectric researchers and industrials for comparative analysis. Furthermore, it can be reused by anyone interested in solid-state devices that wants to calculate the maximum energy stored electrostatically in these devices.

20.
J Am Chem Soc ; 142(5): 2497-2505, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31927889

RESUMO

The unclear Li+ local environment and Li+ conduction mechanism in solid polymer electrolytes, especially in a ceramic/polymer composite electrolyte, hinder the design and development of a new composite electrolyte. Moreover, both the low room-temperature Li+ conductivity and large interfacial resistance with a metallic lithium anode of a polymer membrane limit its application below a relatively high temperature. Here we have identified the Li+ distribution and Li+ transport mechanism in a composite polymer electrolyte by investigating a new solid poly(ethylene oxide) (PEO)-based NASICON-LiZr2(PO4)3 composite with 7Li relaxation time and 6Li → 7Li trace-exchange NMR measurements. The Li+ population of the two local environments in the composite electrolytes depends on the Li-salt concentration and the amount of ceramic filler. A composite electrolyte with a [EO]/[Li+] ratio n = 10 and 25 wt % LZP filler has a high Li+ conductivity of 1.2 × 10-4 S cm-1 at 30 °C and a low activation energy owing to the additional Li+ in the mobile A2 environment. Moreover, an in situ formed solid electrolyte interphase layer from the reaction between LiZr2(PO4)3 and a metallic lithium anode stabilized the Li/composite-electrolyte interface and reduced the interfacial resistance, which provided a symmetric Li/Li cell and all-solid-state Li/LiFePO4 and Li/LiNi0.8Co0.1Mn0.1O2 cells a good cycling performance at 40 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...